Size - Numpy data structures take up less space
Performance - they have a need for speed and are faster than lists
Functionality - SciPy and NumPy have optimized functions such as linear algebra operations built in.
# Create np.array
import numpy as np
my_array1 = np.array([1, 2, 3, 4, 5])
my_array2 = np.arange(1, 10)
my_array3 =[1, 1, 1]
my_array4 = np.ones((3, 4))
my_list5 = np.zeros(5)
type(my_array1)
# Data type
my_list = [1, 2, 3, 4, 5]
# Show datat type
type(my_list)
# Change data type
np.array(my_list, dtype='float64')